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Abstract. Supermodular and submodular functions have attracted a great deal of attention since
the seminal paper of Lovasz. Recently, supermodular functions were studied in the context of some
optimal partition problems. We completely answer a question arisen there whether a certain partition
function is supermodular.
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1. Introduction

Consider a finite saV of n number®1, 62, ... ,6".1f 9’ > Oforalli ore’ < 0for
all i, we callN one-sidedor 1-sided for short). A partitionr = (w1, 72, ... , 7))
partitionsN into p disjoint parts. In thainlabeledpartition problemyr is invariant
under permutations; in thiabeledversion, is not. (||, |72f, ... , |7,|) is re-
ferred to as thehapeof . Let IT denote the set of partitions under consideration.
If I1 is defined by a shap@:, n2, ... ,n,), > i_;n; = n, then we have aingle-
shape-partitionproblem. IfIT is defined by lower boundg;} and upper bounds
{u;} suchthatt; < n; <w;foralli =1,2,... ., pandd.7 6 <n <Y u,
we have thébounded-shape-partitioproblem. IfIT is an arbitrary set of shapes,
then we have theonstrained-shape-partitioproblem.

From now on we considdf and#?, 62, ... , 6" as given. In the sum-partition
problem, a partitionr € IT is projected into a poiMi(7) = (3", 6/, > cr, 07,

D jen, 67) in M7, Let P11, called thepartition polytope denote the convex

hull of 6 () for all = € 1. It is of interest to characterize the verticesrf since
if the objective function is quasi-convex, then there exists a vertex representing an
optimal partition.
DefineS = {1, 2, ..., p}. Aset functionf (1), I C S, is calledsupermodular
if for all subsetsl andJ of S,

fOH+ )< fANT)+ fFUU).

* This research was partially supported by the National Science Council of the Republic of China
under the grants NSC87-2115-M-009-011 and NSC89-2121-M-009-017.



276 F.K. HWANG, M.M. LIAO AND CHIUYUAN CHEN

Define set function
oM (1) = mi J.
M =mind_ > 6
iel jem;

It was shown in [1] that whethex!! (1) is supermodular is important to the study of
P In particular, the following table shows our knowledge on the supermodularity
properties of the functiod!'(7) in various partition problems:

labeled shape 0 supermodularity
yes single general yes
yes bounded 1-sided yes
yes bounded general ?
yes constrained 1-sided ?
yes constrained general ?
no single 1-sided ?
no single general ?
no bounded 1-sided ?
no bounded general ?
no constrained 1-sided ?
no constrained general ?

The first case was proved in [1], and then extended to the second case in [2]. In
this paper we answer the supermodularity question in every other case.

2. Supermodularity
Assume that

ot <2< <o (2.1)
Note that (2.1) implies that

u+w v+w
Z 0/ < Z 67 for nonnegative integer, v, andw with u < v.  (2.2)
j=u+1 j=v+1

Let I denote the complement of sét For a labeled bounded-shape partition
with bounds{¢;} and{u;}, define
L= ., and UI) =) u.
iel iel
Define

L*(I) =maxL(I), n— U}, and U*(I) =min{U(I), n — L(I)}.
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Also define

n(y=max{ Y |ml: 7= (o7 .m) e, Y > 6/ =0](I)¢.

iel iel jem;

ThenL*(I) is a lower bound for the number of elementsifthat belong to
the parts inf subject to the fact that not too many elements are left for the parts in
1, andU*(I) is an upper bound for the number of element#Vahat belong to the
parts inl subject to the fact that enough elements must be left for the parts in
Moreover,n (1) is the maximum number of elements 8fthat belong to the parts
in 1 when a partition achieves the val@g (7).

ltisobviousthatL(I) + L(J) = LU NJ)+ LT UJ)andU)+UJ) =
UunJ)y+UdulJ)holdforalll, J. Moreover,

L*(I) <n(l) <U()
holds for allZ, and if/ € J, then
L*(I) < L*(J), n()<n(J), and U*(I)<U*(J).
LEMMA 2.1. For any subsetg, J of S,
O urH+Uu(H)=zU0INJ)y+U*{T UJ), and
(i) L*(I)+L*(J) < L*(INJ)+ L*(1 U J).
Proof. We only prove (i). The proof of (ii) is similar.

@) U*(IUJ) =UU UJ).ThenU*(I) = UI),U*(J) = UJ), U*INJ) =
UINJ). Itfollows U*(1)+U*(J) = U(D+UJ) = UUINT)+UIUJ) =
U*(INJ)+U*IUJ).

(b)) U*UUT)=n—LUT U J),butU*(1)=UU),U*(J) =U(J). ThenU*(I N
J)=UUINJ). SinceU*(I U J) < UUUJ),the proof of (a) still works
with the last equality replaced by ‘>

() U*IUJ)=n—LAUJ),U*I)=n— L), butU*(J) = U(J). Then
UsINnJ)y =U0dNJ).U)+UJ)-UUINJ)—-UTUJ) =
n—L(H+UWJ)-UINJ)—m—LAUD)=UUJ\I)—LJ\I)>0.
(Thecasd/*(IUJ)=n— LA UJ),U*(I)=UU),U*(J)=n—L{J)is
similar.)

(d) U*I{UJ) =n—LIUJ), U*1) =n—LA),U*(J) =n— L), and
US(INJ)=UNJ).SinceU*(INJ)=UINJ),wehaveU(NJ)<
n—L(INJ). ThenU*()+U*(J)-U*UNJ)—U*(IUJ) =n—L(I)+n—
L(H-UUNT)—(n—L(IUJ))=n—LJ)+L(TUJ)-L(I)-UUINJ) =
n—LINJ)—UUINJ)>0.
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@ U*IUJ)y=n—LAUJ),U*UI)=n—LU),U*J) =n— L), and
U(INJ)=n—LANJ). ThenU*(I)+U*(J)—=U*INJ)=U*IUJ) =
LAINJ)+LIUJ)—L{I)—L(J)=0. ]

THEOREM 2.2. LetII be a set of labeled bounded-shape partitions. Téiris
supermodular.

Proof. Let I, J be two subsets of. Without loss of generality, assuni& (J) <
U*(I). Letk be the index such that', 62, ... , 0 < 0and ¢+, 052, ... 0" >
0.

() U*{UJ) <k.Thenn(INJ)=U*UNJ),n(J)=U*J),n(I) = U*(I),
andn(I U J)=U*(I U J).So by Lemma 2.1, we have

n(ly+n(J)Z2n(INJ)+n(IUJ). (2.3)

Hence

n(J)
o —elann= > 0o
j=n(INJ)+1

n(INJ)+n(IUJ)—n(I)

< > 6/ (by (2.3) and the fact’ involved are < 0)
j=n(INJ)+1
n(IUJ)

< Y. 6/(by(2.2) and by the fact thai( N J) < n(1))

Jj=n(l)+1
=0 ur)—elu.

(i) U*(J) <U*) <k <U*(1UJ).Thenn(INJ) =U*(INJ),n(J) = U*(J),
n(l)=U*I),andn(I U J) = maxL*(I U J), k} < U*(I UJ). Therefore
(2.3) is still true and the proof in (i) still works.

(i) U*(J) <k < U*(I). Thenn(INJ) =U*(I NJ),n(J)=U*J),n) =
maxXL*(I), k}, andn(I U J) = maX{{L*(I U J), k}. Sincen(I) > k, we
haved’/ > 0 wheneverj > n(I) + 1. Sincen(I U J) > n(I), we have
S UYD 97 > 0. Hence

j=n()+1
n(J) n(1UJ)
o —olUnn= > /<0< Y 0=
Jj=n(INJ)+1 j=n()+1

=01 uJ) —6l.
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(ivy U*dnlJ) < k < U*J). Thenn(INJ) =U*UNJ) <k, n(J) =
max{L*(J), k},n(I) = maX{L*(]), k},andn(JU J) = max{L*(IUJ), k}.
We claim that

n()+n(J)<k+n(lUlJ). (2.4)

If n(I1 UJ) = k, then sinceL*(J) < L*(I U J) < k and sinceL*(I) <
L*(TUJ) <k,wehaven(I) =n(J) =kandn(l)+n(J) =k+n(IUJ).If
n(IUJ) = L*(IUJ) > k,thenitis easily seenthatl)+n(J) < k+n(IUJ)
except whem(I) = L*(1),n(J) = L*(J); but thenn(I) + n(J) = L*(1) +
L*()y < L*UNJ)y+ L*JUJ)<k+n(IUJ). Hence
n(J)
o —elunn= > o
j=n(INJ)+1
n(J)
< Z 6/ ( since they’ involved are > 0)
j=k+1
k+n(1UJ)—n(I)
< ) 0 (by(24)
j=k+1
n(IUJ)
< > 6/ (by(2.2)and by the fact of < n(I))
Jj=n(l)+1
=0l uJ)—0eu.

V) U*(INJ) > k. Thenn(INJ) = maxL*(INJ), k},n(J) = max{L*(J), k},
n(I) =maxL*(I), k},andn(I U J) = max{L*(I U J), k}. We claim that

n()+n(J)<nINJ)+nIUlJ). (2.5)

The proof is similar to that of (2.4) and is omitted here. Hence

n(J)
ol —elann= > 0
j=n(INJ)+1
n(INJ)+n(1UJ)—n(I)
< > 6/ ( by (2.5) and by the fact that ttee
j=n(INJ)+1
involved are > 0)
n(IUJ)
< Y ¢/ (by(2.2)and by the fact that(/ N J) < n(1))
j=n()+1
=0l uJ)—0eu.
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THEOREM 2.3. Let IT be an unlabeled single-shape partition defined by the
shape(ny, ny, ... ,n,) and supposé is 1-sided. Thea!" is supermodular.

Proof. Without loss of generality, order thesizes in the given shape into
ni=ny>---=n,if 6 <0 foralli,

and
np<ny<---<n,if 6" >0 foralli.

Sincell is unlabeled, we can consider any mapping ofplsezes to the parts.
Letn;, = Y_!' n; for all 1. Considers andJ. Then

0,/ (I) = ie",
i=1

nj

0,1 () =)0,
i=1
ninJ

o) (INJ)=Y 6" and
i=1

nyuJ

O] UT) =6
i=1

Clearly,

np+n;=nny+nmy (2.6)
holds for all 7, J. By (2.6), by (2.2), and by the fact that~, < n;, we have
0,/ (1) =6 NIy =30 508 < Y 00 =01 UJ)—01(J). |

Next we show that for labeled constrained partition with 1-sided!" is not
supermodular. Lep =4,n =8, IT={(3,1,3,1), (1,4, 1,2)},0'=0°=... =
08 =1,1=1{1,2},J ={2 3. Then

f(1) =3+ 1=4, 6l =1+3=4,

lInJ)y=1, and 6JUJ)=1+4+1=6.
Since the sum of the first two is greater than the sum of the Iastétﬂds not
supermodular.

For unlabeled constrained partition with 1-sid&dconsiderp = 4, n = 16,
I ={(1,55,5), (3,3,4,6) and their permutationsg* = 2 = ... =916 =1,
I ={1,2},J ={1,3}. Then

61(I) = 1+ 5(or 3+ 3) = 6, 6'(J) = 1+5(or3+3) = 6,
l(InJ)y=1, and 6'(JUJ)=3+3+4=10.
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Again the sum of the first two is greater than the sum of the last two, hghie
not supermodular.
Note that the negative results for the two 1-sided cases of course extend to
generald. We next show that for unlabeled single-shape partition with geeral
61 is not supermodular.
Letp =4,n =6,IT = {(1, 1, 1, 3) and its permutatiolsf! = 0% = % = —1,
04 =05=0%=1,1=1{1,2},J ={1,3}). Then
0. (D) = (=D + (D(or (=D + (=D + (-1 +1) = -2,
0,/ ()= (D + (—D(or (=) + (- + (- + 1) = -2,
lINnJ)=(-1+ (=1 +(-1)=-3 and
olIuH =D+ D+ (-1 =-3
Again the sum of the first two is greater than the sum of the last two, lehisenot
supermodular. This negative result extends to unlabeled bounded-shape patrtition
with generab.
Finally, we show that for unlabeled bounded-shape partition with 1-gidef
is not supermodular. Let = 4,n = 10,41 = 1L, us = 4,4, = €3 = {4 = 2,
Up = uz = us = 3,00 =02 =... =019=1,71 = {1,2}, andJ = {1, 3.
Since the partition is unlabeled, we can consider any mapping between the four
bound-intervals and the four parts. Thus

0,/(1) =0,'(J) =4

by assigning the intervdll, 4] to 7, and the interval2, 3] to w5, w3 andmr,. For
6I1(I), we choosen; = np = 2 and i = n4 = 3 (the choice fom!'(J) is
analogous).

N =1

by assigning the intervdll, 4] to 7, and the interval2, 3] to w5, w3 andmr,. For
6I(I N J), we chooser; = 1 andn, = n3 = nq = 3. Furthermore,

l(TuJ)=6

by assigning the intervdll, 4] to 74, and the interval2, 3] to 1,7, andnz. For
oI(1 U J), we chooser; = n, = nz = 2 andny = 4. Since

o +o() =8>0"unn+etaur)=7,

61l is not supermodular.



282 F.K. HWANG, M.M. LIAO AND CHIUYUAN CHEN

3. Conclusion

We have the following new table:

labeled shape [ supermodularity
yes Hgle general yes
yes bounded 1-sided yes
yes bounded general yes
yes constrained 1-sided no
yes constrained general no
no single 1-sided yes
no single general no
no bounded 1-sided no
no bounded general no
no constrained 1-sided no
no constrained general no

All ‘constrained’ cases answer no, and yes in the ‘unlabeled’ case implies the
same for the corresponding ‘labeled’ case. There is no other obvious pattern. Most
of the ‘1-sided’ cases answer yes, but there is exception. Most of the ‘single’ cases
answer yes, but there is exception. Most of the ‘bounded’ cases answer the same
as their corresponding ‘single’ cases, but there is exception.
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